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INTRODUCTION

The elastic-plastic problems of thick-walled tubes subjected to mechani-

cal loadings have been solved by many investigators based on different theo-

ries or methods. 1- 4 Very little work has been done on the elastoplastic solu-

tions for thick-walled tubes subjected to thermal loadinge.5- 7 Recently, a

new finite-difference approach was developed for solving the plane-strain

problems of elastic-plastic thick-walled tubes subjected to mechanical load-

ings3 or thermal loadings.7 The approach has been extended to solve the gen-

eralized plane-strain problem subjected to mechanical loadings.
4

In the present report, the generalized plane-strain problems of elastic-

plastic thick-walled tubes subjected to mechanical as well as thermal loadings

are considered. The formulation includes internal pressure, external pros-

sure, axial force, steady or transient thermal loadings. The numerical result

. is reported for a closed-end tube subjected to internal pressure and to tem-

( perature gradient. The formulation is based on the incremental finite-

difference method using von Mimes' criterion, the Prandtl-Reuse flow theory

and the isotropic hardening rule. All incremental quantities are determined

in the program and no iteration is needed. In order to improve the efficiency

of the program, a scaled loading approach has been implemented. The numerical

results have been compared with those of Bland5 and additional results due to

large temperature gradient are reported.

References are listed at the end of this report.
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BASIC EQUATIONS

Assuming small strain and no body forces in the axisymmetric state of

generalized plane strain, the radial and tangential stresses, Or and oe, must

satisfy the equilibrium equation,

r(30r/ar) - 08 - Or ; (1)

and the corresponding strains, Er and ee, are given in terms of the radial

displacement, u, by

Cr -3u/3r , ce - u/r . (2)

It follows that the strains must satisfy the equation of compatibility

r(80 /ar) - cr - c6 . (3)

Whereas the differential equations (1), (2), and (3) hold throughout the tube

regardless of the material properties, the constitution equations assume

various forms according to the adopted form of yield function, hardening rule,

total or incremental theory of plasticity. In the present report, the

j material is assumed to be elastic-plastic, obeying the von Mises' yield

criterion, the Prandtl-Reuss flow theory and the isotropic hardening law. The

complete stress-strain relations are:

Ac l' - Aoi'/2G + (3/2)ai'&a/(aH') (4)

Ao ; 0 for i - r,O,z

Acm - E- 1 (1-2v)Aam + uAT (5)

where E, v, a are Young's modulus, Poisson's ratio, coefficient of thermal

expansion, respectively, AT is the temperature increment,

2
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2G - E/(1+v)

Cm - (cr+ee+cz)/3 , il' - ci- m ,

am- (ar+Oe+az)/ 3  , ai' - oi - a ,

a - (L/r)[(Or-Oe) 2 + (a0-az) 2 + (oz-or)2]1/2 0 ao  , (6)

and ao is the yield stress in simple tension or compression. For a strain-

hardening material, HI is the slope of the effective stress/plastic strain

curve

a - H(fdeP) . (7)

For an ideally-plastic material (H' - 0), the quantity (3/2)do(oH') is

;eplaced by dA, a positive factor of proportionality. When a < ao or da < 0,

the state of stress is elastic and the second term in equation (4) disappears.

Following Yamada et al, 8 equations (4) and (5) can be rewritten in an

incremental form

Aai - dijhej - EmAT/(1-2v) for i,j - r,S,z

and

dij/2G - v/(-2v) + 6ij - aio'aj'/S (8)

where

2 23 ( H'/G)a , H'I - w/(-w) , (9)

* wE is the slope of the effective stress-strain curve, and Sij is the Kronecker

delta.

Consider an open-end or closed-end thick-walled tube of inner radius a

and external radius b. The tube is subjected to inner pressure p, external

pressure q, and force f, inner temperature Ta and external temperature Tb.

The boundary conditions for the problem are

3



cr(a,t) - p , Or(b,t) =-q

2Yf b razdr ija2 p + f (10)
a

where p is 0 for open-end tubes and 1 for closed-end tubes.

When the temperature T is not varying with respect to time, the steady

state distribution is given by

T - Ta + N log (r/a)
and

N = (Tb-Ta)/log (b/a) (11)

The stress solution in the elastic range is well-known. The quantities p*,

q*, f*, Ta* or Tb* required to cause initial yielding can be determined by

using the von Mises' yield criterion.

FINITE-DIFFERENCE FORMULATION

For loading beyond the elastic limit, an incremental approach of the

finite-difference formulation is used. The cross section of the tube is

divided into n rings with rl-a,r2,...,rkwp, ... ,rn.1-b, where p is the radius

of the elastic-plastic interface. At the beginning of each increment of

loading, the distribution of temperature, displacements, strains, and stresses

is assumed to be known and we want to determine Au, Acr, Ate; Acz, AOr, AGO,

Aoz at all grid points for the applied incremental loading, Ap, Aq, Af, ATi (i

I 1 to n+l). Since the incremental stresses are related to the incremental

strains by the incremental form (Eq. (8)) and Au a rAce, there exists only

three unknowns at each station that have to be determined for each increment

of loading. Accounting for the fact that the axial strain cz is independent

of r, the unknown variables in the present formulation are (Ace)i, (Acr)i, for

4
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£ - 1,2,...n,r*l, and hLz.

The equation of equilibrium (1) and the equation of compatibility (3) are

valid for both the elastic and the plastic regions of a thick-walled tube.

The finite-difference forms of these two equations at i - 1,...,n are given by

(rt+j-2ri)(AOr)i - (ri+j-ri)(Aoe)i + ri(AOr)i+l

- (ri+l-ri)(0-or) i - ri[(Or)+i 1 - (Or)il (12)

for the equation of equilibrium, and

(ri+j-2ri)(46)i - (ri+l-ri)(Acr)i + ri(Ac8)i+ 1

- (ri+l-ri)(cr-e9)± - ri[( e)i+l - (ce)i] (13)

for the equation of compatibility. With the aid of the incremental stress-

strain relations (Eq. (8)), equation (12) can be rewritten as

[(ri+1-2ri)(dl2)i + (-ri+l+ri)(d22)i](ACO)L

+ [(ri+l-2ri)(dli)i + (-ri+l+ri)(d2 1)i](Acr)i

( + ri(dl2)i+l(J&6)i+l + ri(dll)i+l(AEr)i+l

+ E(ri+l-2ri)(d 13)i + (-r£+l+ri)(d23)i + ri(dl3)£+l]Acz

- (ri+1-ri)(Oe-or)I - ri[(r)i+1 - (0r)i]

+ ri Ea(l-2v)-l(ATi+l-ATi) . (14)

The boundary conditions for the problem are

AOr(a,t) - -Ap, Aor(b,t) - -Aq
n

w [ [ri(Auz)i + ri+l(Aoz)i+l](ri+l-ri) - pwa2Ap + Af , (15)

* -where P is 0 for open-end tubes and 1 for closed-end tubes. Using the

incremental relations (Eq. (8)), we rewrite equation (15) as

5
*.



(dl2)l(AE6)l + (dil)1(AFr)1 + (d1 3)lAcz - -AP + Ec(1-2v)-1AT1  (16)

(dl2)n+I(AE0)n+l + (dll)n+i(Acr)n+l + (dl3 )n+i4z - -Aq + Ea(l-v)-1 ATn+1

(17)
and

n

[ (ri+l-ri)(ri[(d 23 )i(AE0)i + (dl3)i(Acr)i] + ri+l[(d23)i+l(Ae0)i+l
i-I

n
+ (dl3)i+1(AEr)i+lI} + (ri+j-ri)[ri(d3 3)i + ri+l(d33)i+l]cz

iI

n
- iAa2Ap + Af/r + (ri+l-ri)[riATi + ri+iATi+l]Ea/(1-2v) (18)

Now we can form a system of 2n+3 equations for solving 2n+3 unknowns, (Ace)i,

(Aer)i, at I - 1,2,...,n,n+l and Acz. Equations (16), (17), and (18) are

taken as the first and last two equations, respectively, and the other 2n

equations are set up at i - 1,2,...,n using equations (13) and (14). The

final system is an unsymmetric matrix of arrow type with the nonzero terms

appearing in the last row and column and others clustered about the main

diagonal, two below and one above.

INCREMENTAL LOADING - FIXED VS. SCALED

When the total applied pressure p or temperature Ti(i-1 to n+1) is given,

it is natural to divide the loading path into m equal fixed increments such as

Ap - (p-p*)/m, ATi - (Ti-T*)/m. These fixed increments need not be equal for

all steps and any sequence of m increments can be supplied by the user. A

sequence of decreasing load-increments is a better choice than that of equal

increments.

6
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In order to increase the efficiency of the program, an adaptive algorithm

based on a scaled incremental-loading approach8 has been implemented. In

each step, a dummy load-increment such as Ap is applied and the incremental

results Ao1 for i - r,O,z at all grids are determined. For all grid points at

which 0 - ll0iII < °o, we compute the scaler a's by the formula

a {r + [r2 + 4 IIOlaI 2(0o2-ailI2)I1/2 1/11oiIi2  (19)

2

where

110,11il2 + 11A0,112 _ 11o, + A01112 (20)

and Iloil ,12 II&oill z, 1lc, + A(,l1 2 are computed by

11o,11 2 .I [(or- a)2 + (Cye_cr)2 + (oz-or )21 .(21)
2

Let X be the minimum of the a's. Then X is the load-increment factor just

sufficient to yield one additional point. A sequence of X(J) can be

determined for all steps j - 1,2,...,m and the updated results are

p(j) - p(J-1) + X(J)Ap(j)S(

oi(J) = ol(J-l) + X(J)Aoi(J) , etc. (2.2)

NUMERICAL RESULTS AND DISCUSSIONS

Consider a closed-end tube subjected to internal pressure p, inner and

outer temperature Ta and Tb. The numerical results were based on the

following parameters: b - 2", a - I", n - 100, v 0.3, E 30x106 psi, Go

30x1O 3 psi, 0 - 0, a - 7.75x10 - 6 In/In0 F.

According to Bland,5 let us define

E = ON/12(1-v)Oo/,13]

7



as a measure of the effect of the temperature differences in the stress

system. The mean temperature

T -2 -V)K Trdr
a

is taken as zero in the calculation of u/r. Three values of the temperature

stress factor 8 are chosen: 0 = -1/2, 0, and 1/2, i.e., Tb-Ta = -72.3°F, 'F,

and 72.3*F. The thermal stresses are in the elastic range. In the presence

of these temperature gradients, internal pressure p is applied incrementilly

until the fully plastic state is reached. The internal pressure p and in ' i

displacement Ua are obtained as functions of elastic-plastic interface D as

shown in Figure 1. The effect of temperature gradient on these relations is

clearly shown in the figure. In order to compare the results by Bland, 5 the

state of stress is evaluated at p/a = 1.73. The dimensionless stresses

(Or,O0,Oz)/Oo are expressed as functions of r/a as shown in Figures 2 through

4 for three cases of 8 - 0, -1/2, 1/2, respectively.

After removing the temperature gradients and internal pressure, the

residual stresses were obtained for all three cases. The states of residual

stresses for the first two cases were still elastic but reverse yielding

occurred when unloading the last case. Five scaled incremental-loading steps

and one applied incremental-loading step were needed to unload completely.

The residual stresses for the last case are shown in Figure 5. The results in

Figures I through 5 are roughly the same as those of Bland 5 except oz .

This difference is reasonable because Tresca's yield criterion is used in

reference 5.

8
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As a last example let us consider a closed-end tube subjected to inner

temperature Ta only- When the temperature gradient is of sufficient

magnitude, yielding will first expand from the inside. When Ta is larger than

a certain liait (238.4'F), plastic zone will expand from both the inside and

outside surface toward the interior. The relation between the inside

temperature and elastic-plastic interface is shown in Figure 6. The stresses

in a closed-end tube subjected to temperature gradient (Ta - 299*F, Tb = 0)

are shown in Figure 7. The dots.- lines are elastic-plastic interfaces.

9
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